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Fig. 1: Site-view from Culvert 110, western division, Erie canal - top is the 3D reconstruction and bottom is the elevation map.

Abstract— Culverts under the Erie Canal perform the es-
sential function of mitigating overflows and regulating water
drainage around the canal. The Erie Canal was built in 1825
with modifications made every few decades. There are more
than 350 culverts along the Erie Canal that goes from Buffalo,
NY to New York City. Culverts need to be regularly inspected
for damage due to aging, inclement weather, and strong water
flow. Such inspections are currently performed manually, which
is extremely tedious, cannot be done often due to scale, and vary
in quality depending on the person performing the inspection.

To address these challenges, we are working with the New
York Canals Corporation to perform an autonomous inspection
of the culverts using a legged robot. Through our experi-
mentation, we have identified two primary challenges in this
application. First, there is limited lighting inside a culvert,
making it very hard to visually capture images that have any
distinct features. This is an issue for both robot localization
as well as inspection. Secondly, the banks of the canal that we
need to navigate to get to the culvert are extremely steep (above
40-degree incline) and vary in terrain conditions based on the
season. We have inspected the culverts in snowy conditions, wet
and slushy conditions, as well as dry conditions. It is important
for the robot to safely navigate to the culvert before it can
inspect it.

Through work over the last six months, we have preliminary

*Equal contribution
†Department of Computer Science and Engineering, University at Buf-

falo, Buffalo, NY, USA
⋄Author is the Director of Fleet & Marine Equipment Management at

New York Canal Corporation, Buffalo, NY, USA
Correspondence: ksingh35@buffalo.edu

results as well as directions addressing both these challenges.
This work presents our methodologies to perform safe and
stable locomotion along the bank and adaptive light control
to effectively illuminate the scene for good image capture. We
will also describe our approach to integrate proprioception and
exteroception into a learning framework for stable locomotion
in uneven terrain.

I. INTRODUCTION

The Erie Canal is a historic waterway in upstate New York
that connects the Hudson River to Lake Erie. Completed in
1825, the culverts beneath these banks are designed to divert
excess drainage water. Unfortunately, these culverts have ex-
perienced structural degradation over time [1], [2], as shown
in one of the NYCC (New York Canal Corporation) structure
inspection reports in Figure 4. These structural degradations,
such as surface corrosion, spalling, and seepage, can lead to
culvert failure, potentially causing significant damage to the
communities and ecosystems. Culverts are generally located
in critically hazardous zones beneath the canals, making it
difficult for humans to perform manual inspection. In addi-
tion, environmental complexities such as steep slopes and
rugged terrain raise additional safety concerns for humans
entering the culverts during manual inspection.

Legged robots are increasingly being adapted to address
the challenges associated with manual inspections in struc-
turally hazardous spaces [3], [4]. Their ability to traverse
complex environments such as confined spaces, uneven ter-
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Fig. 3: Active illumination and exposure control on Boston Dy-
namics Spot and Unitree Go2 robots, inspecting Culvert 110 under
Erie Canal.
rain, and GPS-denied areas, makes them ideal for inspecting
culverts that are inaccessible or hazardous to humans. The
autonomous navigation of legged robots through diverse and
complicated environments has gained attention in recent
years to accomplish critical tasks such as payload deliv-
ery [5], search and rescue [3], [6], environmental inspec-
tion [7], agricultural tasks [8], and others. Legged robots like
Boston Dynamics SPOT, Unitree Go1/Go2, and Anybotics
ANYmal provide basic legged locomotion, enabling them
to walk on reasonably flat terrains. The primary challenge
in using them for off-road navigation is to incorporate a
detailed understanding of the terrain and use this for stable
locomotion. Such stable locomotion will in turn allow us
to deploy them in realistic applications such as culvert
inspection.

In this work, we are collaborating with NYCC to collect
data and perform experiments on their canal sites with
various culverts (culvert 101, 102, 103, and 110) using
Boston Dynamics SPOT and Unitree Go2 robots as shown
in Figure 3. The experiments performed in this work are pri-
marily from culvert 110. Figure 1 shows a digital elevation
model (DEM) of the experiment site. To carry out an end-
to-end autonomous inspection, the legged robot equipped
with stereo cameras, LiDARs and a custom-built LED light
for active illumination descends a 7-meter-long, 30-degree
downward slope in rugged terrain, reaches the culvert located
at Point A, and proceeds to Point B to complete the full
inspection of task, and returns to Point A autonomously.

Our goal is an end-to-end solution for a legged robot
to autonomously navigate the terrain and safely inspect the
culvert. There are several components to achieving this goal.
Currently, we have made progress on two modules that
address the fundamental challenges of performing accurate
state estimation in dark regions and achieving stable loco-
motion in tedious terrain. The modules are as follows :

• Stable Navigation: This module incorporates a context-
aware learning architecture designed to generate high-
level command velocities and predict stable gaits for
a legged robot. It enables the legged robot to navigate
safely and in a stable manner in an offroad environment
such as the banks of the Canal. This module has been
tested in simulation and has shown promising results
compared to the baseline controllers.

• Active Illumination: This module develops an active
illumination and exposure control scheme that uses
online Bayesian optimization to set the optimal ex-
ternal light intensity and exposure time. The system
runs onboard the robot in an event-triggered fashion.
Preliminary results show a 47-197% improvement in

feature tracking when using our method compared to
Auto-exposure with max external light and no external
light, respectively.

II. RELATED WORK

A. Subterranean exploration using Legged Robots

The DARPA Subterranean (SubT) challenge [9], [10]
has demonstrated various robotic exploration and inspection
systems like [11], [12], [13] that demonstrate the capability
of quadruped robots to navigate through sewers, tunnels, and
cave spaces. Further, legged robots’ locomotion capability
has been validated [14], [15] across complex, uneven, and
varying terrain while ensuring safety and efficiency.

With the hardware advancements in the industry, these
robots have not been left untouched from performing some
of the extreme navigation tasks like [16], [17]. Perpetual
observation of terrain is essential to achieve robust and
collision-free navigation of a robot. Sensor-based perception
using exteroception has been exploited over the years that
could result in a high-level but coursed characterization of
a specific terrain. Leveraging sensor-based perception works
like [18], [19] utilizes images to determine risk-aware path
planning for a legged robot. However, these methods, without
any additional signal of terrain difficulty results in a lack of
internal feedback and could make the robot’s body unaware
of its current state. To overcome these issues, [20] couples
both exteroceptive and proprioceptive parameters of a robot
to adapt between different gaits.

B. Stable legged locomotion

Fundamental physics provides a solid foundation to as-
sess the stability of a physical object. Evaluating physical
concepts like the center of gravity, establishing equilibrium,
and the moment of force acting on the body determines
the state. Furthermore, a more formal notion of stability is
explored through the analysis of a zero moment point (ZMP).
The ZMP has been extensively used as a quantitative metric
to analyze and understand the stability of various legged
locomotions since it was introduced by Vukobratovi and
Stepanenko [21]. But with legged robots, on volatile surfaces,
it’s more complicated. Robots like Boston Dynamic’s Spot
acquire state-of-the-art SDK to stabilize their state. However,
we have learning-oriented literature that utilizes various
stability modules from robot proprioception for supervision
to estimate terrain properties for ensuring safe and robust
navigation. Works like [20] provide resistance to the robot’s
motion using proprioceptive readings as the vibration cost,
which could determine the stability of the robot. On the other
hand, [2] uses direct proprioceptive measures to regulate
between a holonomic and non-holonomic action space to
reduce the risk of entrapment. Some of the quantification
relies on a more detailed analysis [30] of the proprioceptive
parameters. On the other hand, simulated observations [17],
[22] tend to be useful in regulating the robot’s locomotion.
In our Navigation-Stack module, we incorporate the trade-
off between the slips and the velocity acquired by the robot
when traversing different terrains.
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Fig. 4: Structure Inspection Report completed by NYCC on 11/14/2023 at Culvert - 110 (Royalton). The inspection was carried out
manually by the inspector using hand tools, including a digital camera, folding ruler, hammer, and tape rule. The report illustrates various
degradation landmarks inside the culvert.

C. Effect of illumination and exposure on robot perception

Environment illuminance plays a critical role in the per-
formance of visual estimation methods, which heavily rely
on feature detection and matching. Illuminance directly in-
fluences image brightness and camera exposure, ultimately
affecting image quality and feature tracking performance.
This impact is particularly pronounced in subterranean envi-
ronments such as caves, mines, and underground structures.

Standard vision sensors, including monocular, RGB-D,
and stereo cameras, rely on auto-exposure (AE) to adjust
settings like exposure time (shutter speed), gain (ISO), and
aperture. While AE performs well in typical scenarios, it
struggles in extreme environments. The primary limitation
of AE stems from its objective: maintaining a mean pixel
intensity around 50%, aiming for neither over nor under-
exposure. This approach, however, may not be optimal for
robot vision tasks. The goal in these applications is to reliably
detect and match stable features, which a neutrally exposed
image doesn’t necessarily guarantee.

D. Active exposure control

Several exposure control methods have been proposed
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33]. [23], [25] controls camera exposure-time while [30],
[34] controls both exposure-time and gain. Some of these
methods propose image utility metrics that aim to quantify
the quality of images from a feature detection and matching
perspective like Mshim [25], Msoftperc [23] and NEWG
[34]. These metrics typically revolve around using image
gradients as most feature detectors exploit gradients for key-
point detection.

III. AUTONOMOUS CULVERT INSPECTION USING
LEGGED ROBOTS

Figure 8 shows the overall architecture of our method,
including Navigation-Stack for stable navigation and
Perception-Stack for the culvert vision inspection. The ar-
chitectural details are as follows:

1) Stable Navigation: During the training, Navigation-
Stack inputs a stream of RGBD images and the robot’s
proprioception data Pt (joints, hips, and feet slips) recorded
in an unsupervised fashion. The framework encodes these
readings into two backbones sel maps [35] and a vanilla
encoder for proprioception resulting in sets of random se-
quences St with visual tokens Fvisual

t and proprioceptive
features Fproprio

t stacked together. As an intermediate step, a
pointer network is defined to assign the weighted confidence
Confidencet between these sets and select the dominating
ones to train. Finally, we use the trained contextual relation-
ship ct as the input to a neural network that provides the
optimal command velocity and height of the robot. The loss
function our training scheme uses to select optimal sequences
is a trade-off between the velocity and slip measurement
from the robot’s proprioception. The slip parameter is a
sensor reading from the Spot that determines the offset of
the robot’s legs from the base. This parameter has been
widely used in various learning-based legged locomotion
frameworks [20] [22]. To train our Navigation-Stack model
in simulation, we use the IsaacSim [36] simulator with
varying terrain configured according to the difficulty levels as
shown in Figure 7. We train our model on terrain configured
using only 10% difficulty level and test our model on 100%
difficulty.
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Optimization Triggered
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Fig. 5: Change in image utility (using Mfeat) as the robot enters the culvert is shown in the 3 settings, AE with no external light results
in underexposed images while adding a fixed (100%) light introduces artifacts such as a greenish hue. Finally, with Perception-Stack, the
overall image utility is consistent, and the sudden dips and greenish hue at the culvert entrance are prevented.
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(a) Simulation Results: Our high level controller achieves better success rates when compared with two
IsaacSim’s native locomotion baselines. The PPO baseline was trained using privileged knowledge from
both exteroception and proprioception.
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(b) Feature tracking performance (l = track
length) of the 3 settings where our algorithm
shows improved feature tracking and lower
exposure-times (∆̄t = mean exposure-time).

Fig. 6: Combined simulation and tracking performance results.

2) Active Illumination: The exposure control methods
mentioned in subsection II-D, adjusting camera parameters
like shutter speed and gain, often fall short in challenging
low-light or varying-light conditions. Insufficient scene ra-
diance can necessitate excessively long exposures or high
gains, leading to reduced frame rates and increased noise. In-
tegrating an onboard light source offers a promising solution
by augmenting scene illumination. However, naive control
of onboard lighting can introduce undesirable artifacts such
as specular reflections and overexposure, while also consum-
ing significant robot power. Careful tuning and control are
essential to mitigate these drawbacks.

Mfeat =

(
1

N

N∑
i=1

Ri

)
·

(
1

N

N∑
i=1

Qi

)2

(1)

We propose a novel feature detector-based image utility
metric and use it as a cost function of our online, event-
triggered Bayesian optimization. To quantify image utility,
we utilize R2D2 [37] as the base feature detection network.
We compute the product of the mean repeatability and the
square of the mean reliability that yields a single scalar value
Mfeat (Equation 1). We evaluated Mfeat performance and

compared it against other benchmark metrics, demonstrating
a strong correlation with feature matching performance.
The overall Perception-Stack’s architecture is illustrated in
Figure 8. Our algorithm begins with Bayesian optimization
(BO) to compute the optimal configurations (external light
intensity P ∗ and exposure time ∆t∗), which provides the
optimal score (M∗

feat). These settings are then executed by
the vision system, and images are received by an image
quality assessment module, which checks the current score
and compares it with the previous optimal score. A threshold
ϵ (ϵ > 0) is provided by the user, which determines the
tolerance. As the robot moves and if M∗

feat − Mfeat >
ϵ, it indicates that the previous optimal solutions are not
sophisticated enough to accommodate the dramatic changes
in the scene. This triggers the reactivation of the BO to
refine the control variables P ∗ and ∆t∗ to improve the image
quality.

IV. EXPERIMENTAL SETUP AND PRELIMINARY RESULTS

To evaluate Navigation-Stack performance, we train a net-
work using the schema shown in Figure 8. For simulation, we
use IsaacLab and create multiple terrain types with varying
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Difficulty: 10% Difficulty: 100%

Fig. 7: NAVstack and all the baselines were trained on multiple
terrains with a difficulty of 10% only. However, we evaluate the
performances on the same terrains with difficulty up to 100%.

difficulties Figure 7 to address the real-world scenario from
our problem scenario. For a fair comparison, we train our
model and all other baselines on the same terrains with a
difficulty level of 10% and evaluate all the tests on 100%
difficulty. We compare Navigation-Stack performance with
two other baseline policies from IsaacSim Omniverse. The
Blind policy was trained over the same training scenario by
only using proprioception, whereas the PPO baseline was
equipped with a height scanner as an exteroception signal.
We evaluate all methods based on the success rate and base
and body oscillation of the robot while maneuvering through
variable terrain. We conducted three experiments, keeping
the starting and end points the same for all baselines and
ours. The results can be seen in 6a.

We performed real-world experiments in the culvert to
evaluate the robustness of our illumination control mod-
ule (Perception-Stack). Our algorithm is deployed on the
Spot robot equipped with a FLIR Blackfly S camera and
controllable 50W LED. Implemented using ROS2, PyTorch,
and Scikit-learn, our algorithm runs online on an onboard
NVIDIA Jetson. The optimization process takes about 20
seconds, depending on the chosen hyper-parameters. We
conducted several tele-operated missions beneath the Erie
Canal, capturing images under 3 camera configurations with
fixed gain: (1) AE with no external lighting (built-in AE
only), (2) AE with fixed external lighting (LED at constant
100%), and (3) our algorithm. Feature tracking performance
for each setting is shown in 6b while change in Mfeat is

shown in Figure 5. The two baselines result in sub-optimal
performance; without external light, image utility and feature
tracking is poor, although the use of external light (at max
intensity) improves feature tracking, it introduces artifacts
such as a greenish hue. Our method achieves superior average
track lengths (47-197% improvement) and reduced exposure
times by 52% (effectively reducing motion blur) while pre-
venting artifacts due to reflections and over-exposure.

V. CHALLENGES AND FUTURE WORK

Our experiment insights have demonstrated the potential
usage of the proposed modules in real-world applications.
We anticipate several challenges to resolve before testing the
complete stack at the site.

• Real-World deployment of Navigation-Stack: Ongo-
ing work is on adapting the learnt model in simulation
to real-world experiments in multiple offroad environ-
ments including the culvert. Future work includes incor-
poration of detailed terrain information (snow, marshy
soil, dampness) as well as generalizing the learnt model
across various legged robots.

• Adaptive Planning in Navigation-Stack: We identified
further locomotion improvements by adding another
stack in our pipeline for stable path planning of the
robot in an adaptive manner. As discussed in subsec-
tion II-B, there is a prior work on estimating stability
margins using ZMP and GIIM metrics. We are in the
process of using these signals to estimate the stability
margin based path planner for efficient and stable loco-
motion in our environment.

• Water and Biofilm Hazards: Wet surfaces inside
culverts can hinder traction and visual inspection due to
biofilm layers. The irregular traction makes the culvert
slippery and prone to failure and creates a reflection
on the water surface. Accurately identifying and adapt-
ing to such scenarios requires specific characterization,
modeling and adaptation to both the perception and
navigation stacks.

• Continuous illumination controls: The proposed illu-
mination control strategy was implemented in an event-
triggered recursive optimization pipeline and temporar-
ily pause robot movement to determine optimal settings
before proceeding to the next way-point. We aim to
further improve our algorithm by applying a continuous
control method and reducing the computing time to
ensure a smooth maneuver.

• Visual Features for Degradation Detection: We aim
to scale our Perception-Stack by incorporating vision
algorithms to detect the degradations such as corrosion,
seepage, and spalling of culvert surfaces. This requires
specifications of the size and type of damages to be
identified and a detailed characterization of visual de-
tection algorithms to accomplish such detections.

• System Engineering: In spite of using state-of-the-
art sensors, we still identified networking issues due
to the structural complexities inside the culvert and
other environmental factors. Culverts often block GNSS
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Fig. 8: Complete overview of our pipeline. Navigation-Stack offers high-level control and stable locomotion, while Perception-Stack
provides active illumination and exposure control for improved robot perception and estimation.

signals, requiring alternative localization methods, such
as inertial navigation systems or mesh networks for
communication. Our autonomy stack needs to be self
sufficient as well as robust to such losses for long-term
deployment in realistic environments.

VI. CONCLUSION

In this work, we introduced an end-to-end autonomy
pipeline for a culvert inspection in the Erie Canal using
Boston Dynamics Spot robot. Our ongoing efforts demon-
strate the capability of a legged robot to perform inspection
tasks that are hazardous for humans. The two modules
presented in this work provide a solution to the navigation
problem on steep, rugged slopes and active adaptation of
light control inside the culvert. We also present our current
challenges and the future directions we have identified during
our experiments.
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[7] H. Kolvenbach, C. Bärtschi, L. Wellhausen, R. Grandia, and M. Hutter,
“Haptic inspection of planetary soils with legged robots,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 1626–1632, 2019.

[8] N. S. Naik, V. V. Shete, and S. R. Danve, “Precision agriculture robot
for seeding function,” in 2016 international conference on inventive
computation technologies (ICICT), vol. 2. IEEE, 2016, pp. 1–3.

[9] M. Tranzatto, T. Miki, M. Dharmadhikari, L. Bernreiter, M. Kulkarni,
F. Mascarich, O. Andersson, S. Khattak, M. Hutter, R. Siegwart et al.,
“Cerberus in the darpa subterranean challenge,” Science Robotics,
vol. 7, no. 66, p. eabp9742, 2022.

[10] K. Ebadi, L. Bernreiter, H. Biggie, G. Catt, Y. Chang, A. Chatterjee,
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